Accurate determination of multiple sets of single molecular conductance of Au/1,6-hexanedithiol/Au break junctions by ultra-high vacuum-scanning tunneling microscope and analyses of individual current-separation curves.
نویسندگان
چکیده
The effect of the binding sites of the terminal groups -S on gold on currents through a single molecular junction (MJ) of Au/1,6-hexanedithiol/Au was studied by measuring current-separation (i-s) curves during repeated formation of a break junction in UHV-STM. Three different single molecular conductance (SMC) values (i.e. G(m)(HC), G(m)(MC) and G(m)(LC)) were found by a careful analysis of corrected current histograms for background tunneling currents using a previously developed robust statistical analysis. Here, HC, MC and LC represent a single MJ with high, medium and low conductance, respectively. These three SMC values are attributed to three different contact modes (i.e. strong-strong, strong-weak (or weak-strong) and weak-weak bindings at the two ends). In addition to these three SMC values due to the different contacts, another lower SMC value was newly observed in the corrected histogram. The presence of the fourth SMC is specific to MJs of alkanedithiols and is attributable to LC of a single alkylene chain with gauche rich conformation, which has a lower SMC value than that of LC with all-trans conformation as proposed previously (Fujihira M et al 2006 Phys. Chem. Chem. Phys. 8 3876). Due to the effects of the contact and the conformational change, it was difficult to determine six different SMC values corresponding to two different conformations (i.e. gauche-rich versus all-trans) with three different contacts (i.e. HC, MC and LC). In addition to this complexity, the current steps corresponding to HC, MC and LC almost always appeared in this order in measured i-s curves during separation. The current step observed here could not only be a contribution from a single molecule, but also contributions from a few groups of molecules that happen to link gold atoms of the substrate with those of the tip apex. Therefore, the SMC value for HC obtained as a peak or a set of peaks in the current histogram could be based upon the sum of the current of HC and those of MCs and LCs coexisting in parallel, unless every MJ would change successively from HC to MC and MC to LC. Namely, the currents through coexisting MCs and LCs would raise the intrinsic current observed for HC itself, while those through coexisting LCs would raise the intrinsic current for MC. To avoid such errors in determining the true SMC, we demonstrate here a new method based upon analyses of individual i-s curves referred to as jump height analyses of individual i-s curves. By this method, the true SMC of LC(all-trans) was determined to be 1.6 nS (i.e. G(m) (LC, all-trans) of 2.1 × 10(-5)G(o)) without ambiguity in spite of the possible presence of LCs(gauche rich) in parallel.
منابع مشابه
Creation of stable molecular junctions with a custom-designed scanning tunneling microscope.
The scanning tunneling microscope break junction (STMBJ) technique is a powerful approach for creating single-molecule junctions and studying electrical transport in them. However, junctions created using the STMBJ technique are usually mechanically stable for relatively short times (<1 s), impeding detailed studies of their charge transport characteristics. Here, we report a custom-designed sc...
متن کاملSimultaneous determination of conductance and thermopower of single molecule junctions.
We report the first concurrent determination of conductance (G) and thermopower (S) of single-molecule junctions via direct measurement of electrical and thermoelectric currents using a scanning tunneling microscope-based break-junction technique. We explore several amine-Au and pyridine-Au linked molecules that are predicted to conduct through either the highest occupied molecular orbital (HOM...
متن کاملLength-dependent thermopower of highly conducting Au-C bonded single molecule junctions.
We report the simultaneous measurement of conductance and thermopower of highly conducting single-molecule junctions using a scanning tunneling microscope-based break-junction setup. We start with molecular backbones (alkanes and oligophenyls) terminated with trimethyltin end groups that cleave off in situ to create junctions where terminal carbons are covalently bonded to the Au electrodes. We...
متن کاملEnvironmental control of single-molecule junction transport.
The conductance of individual 1,4-benzenediamine (BDA)-Au molecular junctions is measured in different solvent environments using a scanning tunneling microscope based point-contact technique. Solvents are found to increase the conductance of these molecular junctions by as much as 50%. Using first principles calculations, we explain this increase by showing that a shift in the Au contact work ...
متن کاملHigh electronic couplings of single mesitylene molecular junctions
We report on an experimental analysis of the charge transport properties of single mesitylene (1,3,5-trimethylbenzene) molecular junctions. The electronic conductance and the current-voltage characteristics of mesitylene molecules wired into Au electrodes were measured by a scanning tunnelling microscopy-based break-junction method at room temperature in a liquid environment. We found the molec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanotechnology
دوره 18 42 شماره
صفحات -
تاریخ انتشار 2007